PHYSICAL CHEMISTRY

DPP No. 35

Total Marks: 26

Max. Time: 27 min.

Topic: Gaseous State

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.5,8

[18, 18]

(3 marks, 3 min.)

Multiple choice objective ('-1' negative marking) Q.6

(4 marks, 4 min.) [4, 4]

Subjective Questions ('-1' negative marking) Q.7

(4 marks, 5 min.) [4, 5]

- 1. Vander waal's equation for 1 mole of a real gas under given conditions:
 - (a) high pressure

(i) PV = RT + Pb

(b) low pressure

(ii) PV = RT - a/V

- (c) force of attraction between gas molecules is negligible (iii) PV = RT + a/V
- (c) volume of gas molecules is negligible

(iv) $[P - (a/V^2)] (V - b) = RT$.

(A) (a)-(i), (b)-(ii), (c)-(i), (d)-(ii)

(B) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)

(C) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

(D) (a)-(iv), (b)-(ii), (c)-(iii). (d)-(i).

2. Four different identical vessels at same temperature contains one mole each of C₂H₆, CO₂, Cl₂ and H₂S at pressures P₁, P₂, P₃ and P₄ respectively. The value of Vander waal's constant 'a' for C₂H₆, CO₂, CI₂ and H₂S is 5.562, 3.640, 6.579 and 4.490 atm.L²,mol⁻² respectively. If value of Vander waal's constant 'b' is taken to be same for all gases, then:

$$(A) P_3 < P_4 < P_4 < P_6$$

(B)
$$P_1 < P_2 < P_2 < F$$

(A)
$$P_3 < P_4 < P_2$$
 (B) $P_1 < P_3 < P_2 < P_4$ (C) $P_2 < P_4 < P_1 < P_3$ (D) $P_1 = P_2 = P_3 = P_4$

(D)
$$P_1 = P_2 = P_3 = P_4$$

- 3. Consider the following statements:
 - 1. $(a)_{NH_3} > (a)_{H_2O}$ [(a) is Vander waal's constant]
 - 2. Pressure of the real gas is always more than the ideal gas for same temperature and volume of the container.
 - 3. Compresssibilty factor for H₂ (g) is never less than unity at any temperature.

The above statements 1, 2, 3 respectively are: (T = True, F = False)

- (A) T F F
- (B) F F F
- (C) FTF
- (D) TTF
- For a real gas with very large value of molar volume, which of the following equation can most suitably be 4. applied:

- (A) $Z = 1 \frac{a}{V_m RT}$ (B) $PV_m = RT$ (C) $Z = 1 + \frac{Pb}{RT}$ (D) $PV_m RT = \frac{a}{V_m}$

5. For a real gas under low pressure conditions, which of the following graph is correct:

- **6.*** Which of the following statements is/are correct about Boyle temperature (T_B):
 - (A) Temperature at which 1st virial cofficient becomes Zero
 - (B) Temperature at which 2nd virial cofficient becomes Zero
 - (C) According to Vander waal's equation, value of $T_B = a Rb$
 - (D) T_B of a gas depends upon the nature of gas
- 7. A hypothetical real gas A, having molar mass 16 g, has a density of 0.8 kg/m³ at 2 atm pressure and a temperature of 127°C. Determine : [Take R = 1/12 L atm K⁻¹ mol⁻¹]
 - (i) the value of compressibility factor Z for gas A.
 - (ii) which forces are dominating among gas molecules, attractive or repulsive?
- **8.** Plot at Boyle's temperature for a real gas will be :

Answer Key

DPP No. #35

(B)

- **1.** (A)
- **2.** (A)
- 3.
- (B)

4.

5. (A)

- 6.* (B,C,D)
- 7.
- (i) Z = 1.2 (ii) repulsive forces

Hints & Solutions

DPP No. # 35

4. For very large value of molar volume (V_m)

 $\frac{a}{V_{m}}$ and b can be neglected, so gas behaves as Ideal

5. At low pressure vander waal's equivalent for a real gas is given as

$$Z = 1 - \frac{a}{RTV}$$

intercept = 1

- 7. (i) $Z = \frac{PM}{dRT} = \frac{2 \times 16}{0.8 \times \frac{1}{12} \times 400} = 1.2$
 - (ii) As Z > 1, so repulsive forces are dominating among gas molecules.
- 8. At Boyle's temperature, for low pressure regions, Z = 1. However, for high pressure regions, Z > 1.

